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It has been estimated that the number of spatial modes (or nodal values) required to
uniquely determine a two-dimensional turbulent flow at a specific time is finite, and
is bounded by Re4/3 for forced turbulence and Re for decaying turbulence. The usual
computational estimate of the number of space–time modes required to calculated de-
caying two-dimensional turbulence is N ∼ Re3/2. These bounds neglect intermittency,
and it is not known how sharp they are. In this paper we use an adaptive multi-scale
wavelet collocation method to estimate for the first time the number of space–time
computational modes N necessary to represent two-dimensional decaying turbulence
as a function of Reynolds number. We find that N ∼ Re0.9 for 1260 � Re � 40 400
over many eddy turn-over times, and that temporal intermittency is stronger than
spatial intermittency. The spatial modes alone scale like Re0.7. The β-model then
implies that the spatial fractal dimension of the active regions is 1.2, and the temporal
fractal dimension is 0.3. These results suggest that the usual estimates are not sharp
for adaptive numerical simulations. The relatively high compression confirms the
importance of intermittency and encourages the search for reduced mathematical
models of two-dimensional turbulence (e.g. in terms of coherent vortices).

1. Introduction
Turbulence is difficult to approximate mathematically, and to calculate numerically,

because it is active over a large and continuous range of length scales (e.g. from less
than a millimetre to hundreds of kilometres in the atmosphere). The range of active
scales increases with Reynolds number (like Re3/4 for three-dimensional turbulence
and Re1/2 for two-dimensional turbulence) which means flows are increasingly difficult
to calculate at the large Reynolds numbers of practical interest. Although the active
flow regions extend over many scales, they are distributed inhomogeneously in both
space and time. This inhomogeneity is called intermittency . Exploiting intermittency
to construct reduced models of turbulence (e.g. in terms of coherent vortices), or
to optimally use a finite number of computational elements (e.g. using adaptive
mesh refinement) are promising ways of constructing a simplified representation of
turbulence (e.g. Farge, Schneider & Kevlahan 1999; Kevlahan & Vasilyev 2005).

The solutions of partial differential equations generally have an infinite number of
degrees of freedom. However, Foias & Prodi (1967) conjectured that solutions of the
Navier–Stokes equations are determined uniquely by a finite number of spatial modes
at each time. This conjecture was refined by Foias & Temam (1984), Constantin (1985)
and Constantin, Foias & Temam (1988) before being proved in the case of forced
two-dimensional turbulence with periodic boundary conditions by Friz & Robinson
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(2001). These results were recently extended to three-dimensional flow past a body by
Galdi (2006), who showed that such flows are uniquely determined by the velocity at
a finite number of nodal points near the body.

The finiteness of turbulence can be understood in several ways: in terms of the
dimension of its attractor, the number of modes (e.g. eigenfunctions), or the number
of nodes at which it is necessary to know the velocity in order to uniquely determine
the flow. Constantin et al. (1988) found an upper bound for the number of Fourier
modes N required to represent the forced two-dimensional Navier–Stokes equations,

N ∼ Gr2/3(1 + log(Gr))1/3 ≈ Gr2/3, (1.1)

where Gr is the generalized Grashof number, which is O(Re2) as Gr → ∞ (Doering &
Foias 2002). This estimate is therefore equivalent to N ∼ Re4/3, which is significantly
higher than the usual computational estimate N ∼ Re (based on a homogeneous
minimum length scale lη ∼ Re−1/2). Note that the equivalent space–time computational

estimate is N ∼ Re3/2 (which simply assumes a time step �t ≈ 1/lη). The central
goal of the present paper is to understand better the scaling of N as a function of
Reynolds number, i.e. to estimate α in the relation

N ∼ Reα, (1.2)

where N is the number of either spatial degrees of freedom, or space–time degrees
of freedom of the turbulence. By degrees of freedom, we mean computational degrees
of freedom which differs from the true mathematical number of degrees of freedom
due to the finite error tolerance used here.

Paladin & Vulpiani (1987) used the β-model (Frisch, Nelkin & Sulem 1978) to show
that the spatial degrees of freedom of an intermittent turbulent flow should scale like

N ∼ Re3DF /(DF +1), (1.3)

where DF � 3 is the fractal dimension of the active part of the flow. A similar
calculation for two-dimensional turbulence gives

N ∼ Re3DF /(DF +4). (1.4)

Measurements of the exponent α in equation (1.2) can therefore be used together
with (1.3) or (1.4) to estimate the fractal dimension, and hence the intermittency, of
the active regions of the flow. Spatial intermittency of three-dimensional turbulence
is associated with DF < 3 and α < 9/4 (and DF < 2 and α < 1 for two-dimensional
turbulence).

Yakhot & Sreenivasan (2005) recently suggested that intermittency may actually
increase the number of computational degrees of freedom if the strongest (and rarest)
fluctuations are resolved. They estimate that the total number of space–time degrees
of freedom in three-dimensional turbulence is actually N ∼ Re4, rather than the usual
estimate of N ∼ Re3 (e.g. Frisch 1995). They note that N could in fact be smaller
than Re3 if only the ‘interesting’ parts of the flow were resolved, since their estimate
assumes a uniform computational grid. However, they are pessimistic that this can
be done: “Even if the interesting parts of a turbulent flow are not space-filling [ . . . ]
we do not yet know how to track them efficiently in hydrodynamic turbulence.” This
is precisely what we attempt to do in the present paper.

Mathematical analysis has confirmed our intuition that turbulence is finitely
representable. However, these estimates do not take into account spatial intermittency,
and are therefore unlikely to be optimal. In addition, the analysis neglects the temporal
degrees of freedom. In this paper we attempt to address both issues: we estimate
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the number of space–time modes necessary to compute two-dimensional decaying
turbulence using a method that takes into account intermittency. Our approach uses
the space–time adaptive wavelet numerical method described in Alam, Kevlahan &
Vasilyev (2006). This method automatically refines the computational grid in both
space and time in order to resolve the two-dimensional Navier–Stokes equations to
the desired accuracy with the minimum number of computational elements (i.e. it
produces an optimal N-term approximation). The method uses local time steps (i.e.
the time step varies with position) as well as an adaptive spatial grid. In addition, the
global time integration error is controlled, something not possible using conventional
time marching methods. By counting the number of significant wavelets we obtain an
estimate of the number of nodal values or modes required to represent the flow to the
desired accuracy. To our knowledge this is the first attempt to find an adaptive compu-
tational estimate of the scaling of the space–time (or spatial) modes of a turbulent flow.

Although turbulence is essentially three-dimensional in nature, two-dimensional
turbulence retains many important properties (such as coherent structures and
intermittency) and its relative computational simplicity makes it a suitable test case
for new theories and computational techniques. In addition, the best mathematical
upper bounds exist only for the two-dimensional Navier–Stokes equations (e.g. Friz
& Robinson 2001; Jones & Titi 1993). Note that, due to the lack of vortex stretching,
two-dimensional turbulence is usually considered to be less intermittent than three-
dimensional turbulence. However, we will see that this is not necessarily the case.
We consider decaying two-dimensional turbulence since forcing is non-trivial in a
space–time approach, and different forcing schemes could lead to different results
(Tran, Shepherd & Cho 2004). Because energy remains bounded as Re → ∞ in the
decaying case, we should not necessarily expect to observe the scaling given by (1.1).
Differences may arise because the forced case has both an enstrophy cascade to small
scales and an inverse energy cascade to large scales, while the decaying case has only
the former. However, we might expect that intermittency is associated primarily with
the small scales of the enstrophy cascade.

2. Space–time adaptive wavelet simulation
As pointed out by Yakhot & Sreenivasan (2005), in order to count the number

of active modes in a turbulent flow we need a way of detecting and tracking them.
Computationally, this is an adaptive mesh problem: we must put the computational
nodes (or modes) where they are needed (in space and time) in order to compute
the flow to a prescribed tolerance. This means we need dynamic adaptive grids and
local time steps. The number of grid points is then an approximation to the number
of nodes, modes or degrees of freedom necessary to represent the flow. By repeating
the calculation for a sequence of Reynolds numbers we can estimate the exponent
α in equation (1.2). We use the space–time adaptive wavelet collocation (STAWCM)
method introduced in Alam et al. (2006) to achieve the necessary adaptivity. In this
section we briefly outline the main features of this method, especially regarding the
problem of estimating degrees of freedom. Note that in the AWCM a unique wavelet
corresponds to each grid point (or node), and so the number of modes is equal to the
number of nodes. The number of nodes should be of the same order as the number
of degrees of freedom required to represent the flow. In the following, position refers
to a point in space–time, i.e. x = (x, y, t) ∈ �3. It is important to remember that the
spatial and temporal grid are adapted simultaneously and in the same way. Alam
et al. (2006) provides details of the STAWCM method.
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STAWCM is based on a multi-resolution approximation (MRA). In this MRA
functions are approximated using tensor product second-generation wavelets (Vasilyev
2003) on a nested set (Gj ⊂ Gj+1) of grid points

Gj = {xj

k ∈ Ω : xj

k = xj+1
2k , k ∈ Kj , j ∈ Z}, (2.1)

where k = (k1, . . . , kn) is the position in n-dimensional space, j is the level (or scale),
xj

k are the grid points in the computational domain Ω , and Z and Kj are some
suitable index sets.

To illustrate the discretization of partial differential equations, let us consider the
MRA of a function u(x),

u(x) =
∑
l∈L0

c0
l φ

0
l (x) +

+∞∑
j=0

2n−1∑
µ=1

∑
k∈Kµ,j

d
µ,j

k ψ
µ,j

k (x), (2.2)

where φ0
l (x) and ψ

µ,j

k are, respectively, the n-dimensional scaling functions and
wavelets of different families µ and levels of resolution j . The strength of the wavelet
decomposition (2.2) is that the coefficients d

µ,j

k measure the variation of u(x) at scale

2−j near position xj

k. These coefficients decay rapidly in smooth regions, and are large
only in regions where the gradient of u(x) is large. This suggests that there exists a
decreasing sequence of positive numbers εJ such that ∀j � J, |dµ,j

k | < εJ . In other
words, any truncation of the above sum over j is an approximation of u(x) at scale
2−j . Also, if u(x) is smooth, except at some isolated points, the above truncation
requires a small number of coefficients to approximate u(x). Thus, the MRA not only
approximates a function, it also compresses it.

For intermittent functions, dµ,j

k is large only at those positions k where the function
has a strong gradient. Therefore, discarding coefficients whose magnitudes are smaller
than a given threshold ε truncates the infinite sum (2.2) to a finite sum, as well as
compressing the function. The truncated sum uJ (x) is a good approximation of u(x)
at level J in the weighted residual sense, i.e.∫

Ω

(u(x) − uJ (x))δ
(

x − xJ
k

)
dx = 0. (2.3)

This restriction establishes a one-to-one correspondence between d
µ,j

k and xJ
k . The

grid adaptation strategy is based on the fact that discarding a wavelet coefficient
is equivalent to discarding the corresponding collocation point. To construct a grid
adapted to an intermittent solution we collect all collocation points xj

k such that

|dµ,j

k | � ε; i.e.

Gj
ε = {xj

k ∈ Ω : xj

k = xj+1
2k , k ∈ Kj , j ∈ Z, ‖d

µ,j

k ‖p � ε‖u‖p}. (2.4)

The adaptive wavelet decomposition then takes the form

uJ
ε (x) =

∑
l∈L0

c0
l φ

0
l (x) +

+∞∑
j=0

2n−1∑
µ=1

∑
k∈Kµ,j

‖d
µ,j
k ‖p>ε‖u‖p

d
µ,j

k ψ
µ,j

k (x), (2.5)

For functions with localized structure in Ω , Gj
ε is much smaller than Gj for all

j . Derivatives can then be calculated on Gε using the appropriate finite difference
formula (Vasilyev 2003). All operations have computational complexity O(N), where
N is the number of significant wavelet modes.
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The approximation error is controlled by the tolerance parameter ε,

‖u(x) − uJ
ε (x)‖p ∼ ε‖u‖p, ε → 0. (2.6)

Relation (2.6) is independent of the dimensionality of the problem. Since the number
of active grid points depends on the dimension and the order of wavelets being used,
one can show that the number of active coefficients satisfies

N ∼ ε−n/p, (2.7)

where p is the order of wavelets used and n is the dimensionality of the problem
(p = 6 and n = 3 in this paper). In other words, the truncation error is related to the
number of terms retained as

‖u(x) − uJ
ε (x)‖p ∼ N−p/n. (2.8)

The AWCM described above is the basis of an adaptive multilevel solver for the
Navier–Stokes equations, which are formulated as a pseudo-boundary value problem
in a space–time domain Ω = D × (0, T ) where D ⊂ �2 and T ∈ �+. For technical
reasons (limited memory) T is split into several subdomains. The AWCM finds the
solution to the Navier–Stokes equations with the smallest number of space–time grid
points possible given a specified residual error ε. This is called an optimal N-term
approximation. We claim that N is therefore a good practical upper bound on the
number of space–time degrees of freedom of the flow. Alam et al. (2006) and Vasilyev
& Kevlahan (2005) provide details of the AWCM space–time and time marching
(adaptive in space only) methods.

3. Numerical simulations
The initial conditions are specified in Fourier space, and approximate a fully

developed two-dimensional turbulent flow with specified power-law energy spectrum
and random phases,

û(k, 0) =
(−ky, kx)

|k|

√
E(k)

2π|k| exp(i2πϕ), (3.1)

where ϕ are random phases and E(k) = g2k
4/(g1 + k2)7/2 exp(−k2/k2

max) is the energy
spectrum. Note that E(k) ∼ k4 for small wavenumbers, E(k) ∼ k−3 for intermediate
wavenumbers, and the spectrum decays exponentially at large wavenumbers; û
is divergence free by construction. This spectrum is similar to the k−3.3 spectrum
measured experimentally for two-dimensional soap film turbulence by Martin et al.
(1998). The constants g1 and g2 are chosen such that the initial r.m.s. velocity is
U = 4.65 and the initial integral length scale is L = 1.09 for all simulations. The
velocity field is transformed to physical space to specify to initial time boundary
condition of the space–time domain. Simulation parameters are summarized in table 1.

All simulations are performed in the space–time computational domain [0, 2π] ×
[0, 2π] × [0, 128], where the spatial domain is a doubly periodic square and the time
interval is [0, 128] (time is normalized by the initial eddy turn-over time τ = L/U ).
As explained in § 2, the problem is divided into sub-problems in the time direction,
each of size 2π×2π×4.2, in order to fit the available computer memory. The coarsest
level of the space–time grid is mx × my × mt , and is refined dyadically as needed such
that at scale j it is mx2

j ×my2
j ×mt2

j . For all simulations mx = my = 64 and mt = 2,
and we use three levels of refinement, so the finest uniform grid is 512×512×16. The
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Run Re Resolution �x λ Reλ

I 1260 192 × 192 3.3 × 10−2 1.1 × 10−1 138
II 2530 192 × 192 3.3 × 10−2 8.3 × 10−2 195
III 5050 192 × 192 3.3 × 10−2 5.9 × 10−2 275
IV 10 100 256 × 256 2.5 × 10−2 4.1 × 10−2 389
V 20 200 384 × 384 1.6 × 10−2 2.9 × 10−2 551
VI 40 400 512 × 512 1.2 × 10−2 2.0 × 10−2 779

Table 1. Parameters for the reference pseudo-spectral DNS. The initial integral length scale
L ≈ 1.09 and the initial r.m.s. velocity is U ≈ 4.65. Reλ is the Taylor Reynolds number, based
on the initial Taylor scale λ =

√
E/Eω (where E is the kinetic energy and Eω is the enstrophy.)
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Figure 1. The vorticity field at t = 126 eddy turn-over times and Re = 40 400. (a) Computed
from an average 7895 spatial wavelet modes (total space–time modes in sub-domain
t = [123.8, 128.0] divided by the number of time levels). (b) Computed from 263 169 Fourier
modes using the pseudo-spectral method. (c) Energy spectra: - - -, wavelet, — spectral.

grid sizes at the finest level are therefore �x ≈ 1.2 × 10−2 and �t ≈ 2.6 × 10−1. Note
that the time scale of two-dimensional turbulence is believed to be the eddy turn-over
time, independent of scale and Reynolds number (Davidson 2004). The simulations
use a fixed error tolerance ε = 10−4 (unless otherwise noted), which is small enough
that we can consider the STAWCM to be a direct numerical simulation (DNS).

In order to verify the results of the STAWCM method, we calculated reference
solutions at the same Reynolds numbers using a standard pseudo-spectral DNS (e.g.
Vincent & Meneguzzi 1991; Kevlahan & Wadsley 2005). For a given Reynolds
number, the minimum necessary resolution was determined by checking that the
energy spectrum did not change significantly when the resolution was increased. As
pointed out in the introduction, the Kolmogorov scale for two-dimensional turbulence
is O(Re−1/2), which means the grid size �x � LRe−1/2 (where L is the integral scale).

4. Results
We first check that the results of the STAWCM simulation agree with the reference

pseudo-spectral simulation at Re = 40 400 (the highest Reynolds number considered).
Figure 1 (a, b) shows that the vorticity fields are very similar even though the
STAWCM uses 33 times fewer modes spatially (on average) when ε = 5 × 10−4.
Figure 1 (c) shows that the energy spectra from the two simulations also agree. These
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Figure 2. Energy spectra. (a) Re = 20 200, at times t = 85, 128, 170, 213 compared with the
initial spectrum k−3. (b) t = 126 for Re = 1260, 2530, 5050, 10 100, 20 200, 40 400 compared
with experimental spectrum k−3.3.
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Figure 3. Vorticity field at t = 126.

results confirm that the STAWCM is equivalent to standard pseudo-spectral DNS,
but uses far fewer computational modes.

Figure 2 (a) shows the time development of the energy spectrum at fixed Reynolds
number Re = 20 200. Note that the spectrum does not change significantly at these
intermediate times. Figure 2 (b) shows how the energy spectrum at fixed time t = 126
varies with Reynolds number. As expected, the power-law range increases and the
slope decreases with Reynolds number. This plot also confirms that we have fully
resolved all active length scales. Figure 3 shows how coherent vortices decrease in size,
increase in number and are accompanied by intense filamentary structures as Reynolds
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Figure 4. Adaptive wavelet grids at Re = 40 400 (half the time domain, i.e. 9 time levels,
is shown). (a) Space–time grid: first time interval t ∈ [0, 2.1]. (b) Space–time grid: final time
interval t ∈ [123.8, 126.0]. (c) Spatial grid only at t = 126.0. Note the strong time intermittency
of the solution: the smallest time step is strongly localized in space.
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Figure 5. Degrees of freedom N as function of Reynolds number Re compared with fitted
slopes and the usual non-intermittent computational estimates. (a) Space–time. (b) Space only.

number increases. These changes are responsible for the increased intermittency of
high-Reynolds-number turbulence. We will show that this intermittency significantly
reduces the total number of degrees of freedom compared with the uniform-grid
estimate O(Re3/2).

We now present the main results of this paper: on grid adaptation, wavelet
compression and the number of space–time modes necessary to calculate decaying
two-dimensional turbulence. We also estimate the scaling exponent α in equation (1.2).

Figure 4 (a) shows the computational grid when the solution has converged (i.e.
the residual error is less than ε). Note that for this figure we use a slightly larger
ε = 5 × 10−4. The results in figure 4 show the ability of the method to provide both
an adaptive spatial grid and local time steps. It is clear from figure 4 (a, b) that we
do not actually use the smallest time step at every spatial location. The smallest time
step is used only rarely, and only at those spatial locations where the solution has a
strong gradient. Comparing figures 4 (a) and 4(b) shows that the turbulence dynamics
significantly increases intermittency compared to the random phase initial condition
with a similar energy spectrum.

Figure 5 (a) shows how the number of space–time degrees of freedom in a time
interval of 21 eddy turn-over times (107 � t � 128) scales as a function of Reynolds
number. From this graph we estimate that α in equation (1.2) is about 0.9. This is
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much less than the usual estimate of 1.5, which shows the importance of intermittency.
We checked that the scaling exponent is roughly constant for times 21 � t � 128.
This suggests that the decaying turbulence results should be similar to results from
stationary forced turbulence, at least for intermediate times. As noted earlier, and
shown in figure 4, the major source of intermittency is temporal, rather than spatial.

It is important at this point to distinguish the minimum physical and computational
time scales. Two- and three-dimensional turbulence are qualitatively different because
the minimum time scale of two-dimensional turbulence is believed to be scale (and
hence Reynolds number) independent, while the minimum time scale of three-
dimensional turbulence decreases like Re−1/2 (Davidson 2004). However, the minimum
computational time scale is inversely proportional to the minimum spatial scale, i.e.
�t ∼ 1/lmin, which give the usual estimate for the number of space–time degrees of
freedom: O(Re3/2) in two dimensions and O(Re3) in three dimensions.

Figure 5 (b) shows the average number of spatial degrees of freedom for 40 �
t � 128 calculated using a similar time marching AWCM (Kevlahan & Vasilyev
2005). The scaling is α ≈ 0.7, compared with the non-intermittent estimate 1. Thus,
two-dimensional turbulence is in fact quite intermittent in space, as well as in time.
This strong intermittency is somewhat surprising since two-dimensional turbulence is
usually considered to be relatively homogeneous, and temporal intermittency has not
been investigated.

The β-model described in the introduction implies that the spatial fractal dimension
of decaying two-dimensional turbulence is DF ≈ 1.2. A simple extension of the β-
model gives a temporal fractal dimension Dt ≈ 0.3. Although these results depend
on the assumption that the active fraction of the flow decreases like a power of the
scale l, the fractal dimension does provide a qualitative measure of how intermittent
the flow is. More sophisticated multi-fractal models have also been proposed.

5. Conclusions
We have used the space–time adaptive wavelet collocation method (Alam et al.

2006) to estimate the number of space–time computational modes N necessary to
represent two-dimensional decaying turbulence as a function of Reynolds number.
We find that N ∼ Re0.9 for 1260 � Re � 40 400 over many eddy turn-over times, and
that temporal intermittency is much stronger than spatial intermittency. In addition,
we used a time marching AWCM (Kevlahan & Vasilyev 2005) to estimate that
the number of spatial computational modes scales like Re0.7. This is the first time
estimates of the number of degrees of freedom in turbulence have been obtained
that fully include spatial and temporal intermittency. The β-model then implies that
the spatial fractal dimension is DF ≈ 1.2, and the temporal fractal dimension is
Dt ≈ 0.3. These results suggest that the non-intermittent computational estimate of
the number of space–time modes N ∼ Re3/2 is not sharp for finite-precision adaptive
numerical simulations. The relatively high compression confirms the importance of
intermittency, and encourages the search for reduced mathematical models of two-
dimensional turbulence (e.g. in terms of coherent vortices).

We plan to extend the present results to three-dimensional turbulence, where non-
intermittent estimates of the total number of computational space–time degrees of
freedom vary between O(Re3) and O(Re4) (Yakhot & Sreenivasan 2005).
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